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We have developed an effective description of surface-wave propagation along the boundary between
vacuum and a dense plasma or a low-density and high-density plasma in the case when the high-density
plasma can be characterized by a nonlocal asymmetric conductivity tensor. This last condition leads to
a different dispersion relation from the well-known one for surface waves. The asymmetric conductivity
significantly affects the phase velocity and attenuation of the surface wave and makes the conditions for
its excitation simpler. The effects of energy dissipation in the dense plasma on the evanescent and sur-
face waves are taken into consideration. It is shown that damping of the surface wave in the propagation
direction is low, if the surface impedance is small (|£] << 1). We also discuss the possibilities of excita-

tion surface waves in different geometries.

PACS number(s): 52.40.Db

I. INTRODUCTION

The development of the laser facilities [1] generating
high-intensity (I >1I,, where I,=cE?}/87=3.4X10'¢
W/cm? and E,=e/r}=5.1X10° V/cm is the atomic
field) ultrashort pulses ( <1 psec) allows the creation of
laboratory plasmas with solid-state density and unusual
properties (i.e., properties different from those of a classi-
cal laser-produced plasma characterized by nanosecond
time scales). In the presence of the strong electromagnet-
ic field (E > E,) atoms in a solid target are ionized first
due to multiphoton ionization in the tunnel limit, and
second by electron-impact ionization in a time shorter
than the period of the laser radiation [2]. The important
feature of plasmas generated on the femtosecond time
scale is that there is not enough time to convert the elec-
tron energy into kinetic energy of directed motion of the
ions and hence insignificant hydrodynamic motion occurs
during the pulse. At the very least, a very steep density
gradient [(d Inn; /dx) ™! <<}, where n; is the ion density
and A, is the wave length of the incident radiation] will
develop over an interaction time of about a hundred fem-
toseconds [3]. Another important property of a dense
plasma created in the skin layer of the radiation is that at
electron temperatures higher than several keV the plasma
becomes collisionless. In this case the electron mean free
path /,; substantially exceeds the penetration depth of the
electromagnetic field into the plasma, [, e.g., skin depth,
so I,;>>I.. In this case the relationship between the
current density and the associated electric field is nonlo-
cal and, in general, is represented by an asymmetric con-
ductivity tensor. The spatial distribution of the evanes-
cent electromagnetic field within the plasma is then no
longer exponential, as in the absence of spatial dispersion,
and has to be determined by solving the self-consistent
problem of the field penetration and absorption along
with the kinetic equation for the electron distribution
function [4].
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We have shown qualitatively in a previous paper [5]
that the distinct boundary between the low-density plas-
ma (or vacuum) and high-density plasma, which has the
nonlocal properties, can support surface waves. The
properties of the dense plasma influence the dispersion
relation via the surface impedance. Generally, the sur-
face impedance is proportionality coefficient between
electric and magnetic field at the interface where the elec-
tromagnetic wave is incident. For the media having an-
isotropic electric properties the surface impedance ap-
pears to be the two-dimensional (2D) tensor [6,8]. The
surface impedance in general form obeys the Kramers-
Kronig relations similar to those for the dielectric per-
meability. For the anisotropic plasma with nonlocal
properties to be considered later in this paper the surface
impedance (2D tensor) depends on the anisotropic con-
ductivity via the anisotropic electron distribution func-
tion and can be found after solution of Maxwell equations
using proper boundary conditions.

In this paper we present and analyze the dispersion re-
lations for surface waves quantitatively in different target
geometries for isotropic and asymmetric electron distri-
bution functions with different dissipation mechanisms
taken into account. It is shown that damping of the sur-
face wave may be small in the case when the surface im-
pedance is small. The change of the degree of asymmetry
of the conductivity (or the electron distribution function)
leads to a change of the ratio of the real to imaginary
parts of the impedance and consequently to a change in
the dispersion relation. We also discuss the possibility of
exciting a surface wave propagating along the boundary
of a dense plasma and an inhomogeneous plasma with a
steep density gradient by an obliquely incident p-
polarized heating beam which also creates the plasma.

II. FORMULATION OF THE PROBLEM

Let us consider a set of simple geometries where the
plane z =0 separates the half space z >0 occupied by a
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plasma characterized by a constant ion density, cold im-
mobile ions, and hot electrons. At z <0 we consider
three cases: (a) vacuum; (b) a homogeneous slab of low-
density plasma; and (c) a slab of plasma with a very steep
density gradient (the density changes abruptly from O to
the plasma density at z>0). The final geometry corre-
sponds to a plasma created by the interaction of an in-
tense subpicosecond laser pulse with a solid target [2—4].
Our aim is to find solutions which represent surface
waves, propagating along the boundary z =0. It is as-
sumed that the electromagnetic field associated with the
surface wave has the following form:

E(0,E,,E, ), H(H,0,0) ~exp( —iwt +iky) ,

where k is the component of the wave vector in the direc-
tion of propagation of the wave and o is the wave fre-
quency. We also assume that the amplitude of the field
associated with the surface wave is small, causing only a
perturbation of the background distribution function.
Because the electromagnetic field is evanescent in the
dense plasma, the frequency of a surface wave is small
compared with the plasma frequency <aw),
=(4me?N,/m)"?, where e, N,, and m are, respectively,
the electron charge, density, and mass. The spatial distri-
bution of the electromagnetic field is then described by

the set of Maxwell’s equations -
47 ., 1 0E 1 oJH
Vx —_ +___’ ‘IX :_____’
H c J c ot E ¢ ot )

where j is the current density and c is the speed of light
in vacuum. Equivalently the field is described by the fol-
lowing set of coupled wave equations:

2

E . a z 47 . .
aTZy"“k%Ey-“lk % o tkoiy=0, @)
3E
(k%—kz)Ez—ik—a—z}’—+ﬂclr—ikojz=0 , 3)

where ky=w/c. In the high-density plasma (z>0) the
current density j is nonlocally related to the electric field
E via the conductivity tensor o,

zm=f0 0.4z,2" )Eg(z')dz"
(a,B)=(z,y) .

4)

In a rare plasma (@ >>®,,,), where Ree >>Ime, (2) and
(3) reduce to the usual wave equation for dielectrics by in-
troducing €,=1+i4r0,/0=1—w’,,/w’*. According to
Ref. [6] the spatial distribution of the electromagnetic
field within the dense plasma can be related to the surface
impedance via inverse Fourier transformation

1 e .
E ()=~ [" &qHoe'"dg , 5
where H,=H (z = +0) and the surface impedance is

_ 1
e=5—[" &qidg . (6)

Let us look for a solution where a p-polarized elec-
tromagnetic wave propagates along the boundary z =0
between the low-density homogeneous and high-density
plasma and is evanescent both to the left and right of the
boundary. In the rare plasma the electromagnetic
wave is characterized by well-known solutions E,H
~exp{k,z —iwgt +iky} and

. ko€,

H. (7)

Here k?2=k2>—¢€,k3>0; 0<e;<1. Requiring continuity
of E,, H at z =0 one obtains from (5)-(7) the following
dispersion relation for the surface waves
ik,
ko€,

=£. (8)

In the case of a medium with the local properties at
z >0, which is characterized by dielectric permeability €,
and kj=k>—k%,(|E|,|H|~exp{—k,z}) the surface
impedance in (8) can be replaced by

ik,

ko€,

E— 9)

and one arrives at the usual dispersion relation for sur-
face waves [7,8]

ki€,
*E’IE— 1. (10)

The relation (10) describes the surface-wave solutions
only for the case €, <0. In what follows we will obtain
the surface impedances for different electron distribution
functions in the dense plasma, and analyze the corre-
sponding dispersion relations for surface waves. Note
that the dispersion relation (8) is also valid for the case of
vacuum at z <0 (e;=1).

III. THE SURFACE IMPEDANCE
IN A PLASMA
WITH NONLOCAL ELECTRIC PROPERTIES

To Fourier transform the wave equations (2) and (3)
one has to continue the field quantities into the region
z<0. Assuming the electrons are specularly reflected
from the boundary at z=0, the field quantities are con-
tinued into the region z >0 in accordance with the usual
recipe [6]

E(—z)=E,(z), H(—z)=—H(z),
E,(—z)=—E,(z).

(11)

The component E, is continuous across the boundary
z =0, while E, and dEy /dz at the left (z <0) and the
right side (z>0) are related via the boundary condition

(6]
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. oF . oE ) dimk,
ikE, — azy T ‘zkEz— azy z=_0=21k0H0 , [(kg—k2)+ 0, ]Ezq
(12)
Hy,=H(z=0). 4tk
+ |kq +i 0y |EWpy=0,
Let us define the Fourier transform f, of a function (14)
F(z) in a usual manner, 4k,
¢q:foo F(z)eiqzdz ) (13) zlkH():Eyq 1 O'yy—(q2_k2)
Now one can Fourier transform the wave equations (2) Ak
and (3) over the whole space — o <z < « making use of . o, tkq |E, .
(4) and (11)—(13). Such a transform then results in the
following set of the coupled equations: Solving (14) for E,, one obtains
J
. . -1
£, ik, [ [i4wk0 o (k|- [kq +i (41Tico/clozy.][kq +i(dmky/C)a, ] ’
c (kg—k*)t+i(4mky/c)o, 1)
E,,=&(@H, .
[
The spatial distribution of the electromagnetic field w Uy 2qid?
within the plasma then can be calculated by (5). oy =e’ f o lu,| (a_zj-%)
Let us now calculate the surface impedance for the z q
different cases assuming that the background electron x of a | of  df
distribution function is known and not affected by the apy [uz| 2 apy Uy ap, ’
surface wave. One can calculate the conductivity by us-
ing the routine perturbation method [6]. The electron o> Yo 2aid 32
distribution function is represented as the sum of a slowly Tza=¢ f o lu,| (a?2— q?)
. . . z
varying bulk part (on the time scale of the pulse duration)
and small rapidly varying part (changing on the time «|of k| df  3f 17
scale of the period of the laser wave). dp, koc | “0p, Y p, ’
After linearization of the kinetic equation one can re-
late the rapidly varying part to the slowly varying one wo—ku,

and apply this relation for the calculation of the conduc-
tivity. In the calculations of the skin effect in metals at
low intensities the electron distribution function in the
skin layer is assumed to be Maxwellian during the whole
interaction time [6,8]. At high intensities (> 10"
W/cm?) and for subpicosecond pulses the slowly varying
part of the electron distribution function is strongly
affected by incident electromagnetic field and is transient,
non-Maxwellian, and asymmetric [4,9]. In general,
Maxwell’s equations and the kinetic equation must be
solved self-consistently. In this case the penetration
depth of the field (the skin length) depends on the form of
the electron distribution function via an integral relation
[9].

Using the routine perturbation procedure one can ob-
tain the Fourier transform for the electric current in the
plasma for the general case of an arbitrary (relativistic)
electron distribution function

ja(q)=oﬁa(q)EB(q):Eyoya+Ezoza ’ (16)

where a,8—y,z and
J

a=
lu, |

Here f(p,?) is the slowly varying bulk part of the elec-
tron distribution function, and e, u, and p are the elec-
tron charge, velocity, and momentum, respectively.

A. Isotropic case

For the case of an isotropic nonrelativistic distribution
function f(p?) (but one which is not necessarily Maxwel-
lian) one can obtain the diagonal terms of the symmetric
conductivity tensor by integrating (17) over the angles be-
tween p and the z axis,

99 © Qf
0, =0,=T, oo=2me’ ——dp,dp,, . 18
zz lq|’ 0 fopap py Px (18)
Note that ao~a)12,e/ (u ), where ®,, is the electron plas-
ma frequency and (u ) is the average electron velocity.
Let us introduce the skin length as

—1/3 1/3

ko ¢

Lu) Bpe

c @

=

(19)

c @

pe

Now making use of (15), (5), (18), and (19) one can ob-
tain the surface impedance for this case in the form

w 2ik,lqldgl}

1 o 1
—_ d = .
e I T A P PE T B L Py s

(20)
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We are interested in surface waves in the electromag-
netic limit, when k >k,. On the other hand, the skin
length is much less than laser wavelength, i.e., kyl, <<1.
The integrand of (20) peaks near ¢ '~/,. Taking into
account these considerations one can reduce (20) to the
form

- —im2 (o _lxldx
s=(l+k2132 11r/3)k lse im/3 % —IA%A (21)
: © =1 1+]xlx?

The integral in (21) has tabulated value
© NI NEY
Lpexddx 125050 4
moo 1+[ylx* 3w

The final form of the surface impedance is

£,=0.TTkol (e """ 3+ KkU2)=Re&, +iIm&, . (22)

B. Anisotropic case (o ,, 70 ,,70)

The anisotropy of the electron distribution function de-
pends on the intensity of the incident wave. At relatively
low intensities (I > 10'® W/cm?) the electrons gain ener-
gy when accelerated in the direction of the propagation
of the electric field of the incident wave (in parallel to the
surface). The energy of these electrons slightly exceeds
the energy of those moving in z direction (T, >T,,
T, /T,=1.1-1.2) [4]. For the intensities in excess of the
relativistic one (I > I,~10'"® W/cm?), the ponderomotive
force becomes of major importance and drives electrons
in the direction of the incident wave. The anisotropy of
the electron distribution function changes for this case in
such a way that 7, > T', [10,11].

Analysis of the denominator in Eq. (15) shows that in
this case the last term containing the anisotropic conduc-
tivity is dominated by the product of the off-diagonal
terms of the conductivity tensor (47k, /c)2ozyayz. This
term is proportional to a)f,e 12/c? while the other terms
are proportional to k22 and ki, respectively (note that
®p, >>w). In the case of the anomalous skin effect col-
lisionless case) the electron time of flight through the skin
layer is less than the wave period and the collision time,
i.e., w/qu, << 1. Taking into account this condition and
®p, << one can expand the surface impedance of Eq.
(15) into a power series of w/qu, in the same manner as
was done in [4]. This results in a relation for the surface
impedance similar to (22) (see [4]),

2 o udu
w=kol, = —————— =k, ®d), (23)
Sas=ko ‘n-fo 1+u(u?—d) 0%

where d =(w,, /c)?A and A is the anisotropy parameter
for the relativistic electron distribution function,

24 2
1 p;tpi/2 | _ Pr of
=— [dpi|1+——=— |y} —=
e / PH mier |V T 2y o,
(24)
where p} =pZ+p? and y=(1+p*/m?c?)!/? is the rela-

tivistic factor. For the case of a two-temperature nonre-
lativistic electron distribution function

(u)= n,m3? muz2 uf+uy2 25)
S e e, P | T2, M, |0
Eq. (25) reduces to

T,

z

The real and imaginary parts of (24) were calculated
numerically in [4]. In the case of d =0 (A=0, the isotro-
pic function), Egs. (21) and (23) coincide to within an ac-
curacy of k?/2. The asymmetry can change the ratio of
the real to the imaginary parts of the impedance by up to
ten times in comparison with the isotropic case. This
occurs due to the change in the relative role of two ab-
sorption mechanisms: noncollisional absorption (like
Landau damping) and capacitor heating. Note that the
influence of the asymmetry on the surface impedance
may be significant even in the case when the asymmetry
parameter A is very small. Formally this is connected
with the fact that the anisotropy parameter A is multi-
plied by the factor (w,/; /c)? which may be larger than
unity in the case of the anomalous skin effect due to
wp >0. If A>1 (T, >T,) noncollisional absorption
dominates and Re® > |[Im®| (Ref, > |Imé, |). In the
case A<O (T,>T,) capacitor heating prevails and
Ilmgas| > Regas'

IV. THE DISPERSION RELATIONS
FOR THE SURFACE WAVES

Now one can write the dispersion relation (8) for the
surface waves in an explicit form introducing the com-
plex surface impedance by the relation

E=|Ele'P=Reé+iImE=R +il ,
R
(R2+I2)I/2 .
Equation (8) reduces to
k2
kd

cosp=

=¢€,—€}E[%e . 27

Taking into account that the surface impedance is small
|€] ~kol; << 1 one can solve Eq. (27) for the k vector to
obtain

Rek =kgel’2(1—¢€,|&|%cos24)' 2,
€,1€]*|cos24|
2V72 ’

where cos2¢=(R2—1I?)/(R*+1?).

For the case of an isotropic distribution function (in
the electromagnetic limit for the surface wave k > k),
one obtains |£;| ~0.77k,l,, ¢=1/3, and (28) reduces to

(28)
Imk =Rek

_ )4/3 (u) 2/341/2
Rek =k06}/2{1+a 2 e ] ,
(T)pe c
2 (29)
Imk = Rek 16!
w2’
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where a is a numerical coefficient of the order of unity.
The real part of (29) coincides with the qualitative esti-
mates from [5]. It follows from (29) that attenuation of
the surface wave is low if the surface impedance is small.
For the case of an anisotropic electron distribution func-
tion one can deduce from (23) that

E,=(kol Y Re®+i Imd) . (30)

After insertion of (30) into (28) it is easy to calculate the
phase velocity of the surface wave on the plasma bound-
ary

(R3,—13) |77

c
1%
(R%,+1%)

—_0 _ 2
phase — Rek - 6%/2 1_61]§3s|

(31)

This equation describes the main difference between
the anisotropic and isotropic cases. In the isotropic case
Il >R (R >0, I <0), and the phase velocity is always
lower than speed of light in vacuum. For the case of an
anisotropic function at A>1, as it follows from [4],
R = |I|. Thus if R approaches |I|, the phase velocity of
the surface wave approaches the speed of the light in vac-
uum even in the case of vacuum-plasma boundary
(e;=1). It means that unlike the classical case for excita-
tion of a surface wave, it is possible to excite such a wave
on the boundary of any medium with an anisotropic con-
ductivity. Note that when R approaches |I| the attenua-
tion of the surface wave (Imk) goes to zero. At the given
wave number k it is easy to deduce from (31) the decre-
ment of the surface wave damping

C

€

do

~Tmk
dk |”™

y=Imk (32)

The decrement is low if the surface impedance is small,
|€] << 1.

The form of the electron distribution function can also
change the skin-length dependence of the plasma and
electromagnetic wave parameters. For the anisotropic
case (equivalent to a stationary, bi-Maxwellian electron
distribution function) the skin length depends on the ra-
tio of the transverse to longitudinal temperatures [4].

1/3 1/3

u, w,

¢

2T
7TTl

_¢c
s,as
@p

In this case the skin length changes only by a small nu-
merical coefficient [(2/7)(T,/T,)]'/*. When a powerful
ultrashort laser pulse interacts with a solid target, a plas-
ma with a transient, non-Maxwellian electron distribu-
tion function is created. The skin length in such a plasma
is expressed as [9]

1/3

Sos | ()8 (33)

4
ltr~

w

where u s =eE,/m,w is the electron oscillation velocity
in the electric field of amplitude E. The surface im-
pedance for this case reads

eE,

wpe

(2]

@pe

E=kl, =

1/3
] ()16 . (34)
m,c

Finally, for all cases of electron distribution functions
which have been considered (isotropic, anisotropic,
transient, non-Maxwellian), the main frequency depend-
ence of the surface impedance remains the same,
~(@/w,,)*"*. Only a weak correction ~(wt)'/® appears
in the case of a time-dependent distribution function.

V. DISCUSSION

Let us now compare the dispersion relations for a
medium with nonlocal and asymmetric electric properties
to the known relations for different media with local
properties. For the simplest case of two dielectrics with
0<e€ <1 at z<0 and €,<0, |¢,|>€, at z>0 from (10)
one can easily obtain the linear dispersion relation. In
this case k vector of the surface wave has only a real part
(8],

0? l&le
k 2= —

—_— (35)
c? lel—e

Let us suppose that a metal is located at z>0 with
Ime, =€) =4wo /o and Ree,=¢),<<e,. It is easy to
deduce from (10)

2
3 €
Rek =k, {1+ = ,
ot 4 (&) )?
(36)
Imk =Rek—!
mk = - .
V2ey
For highly conducting metals, if v5>0,>0,

Reo zwlz, /4mvg (Ve is the effective collisional frequen-
cy), and e'z'zco’% /ov.s the mode of the interaction falls
into the frame of the normal skin effect [8]. In this case

€

1l = &
(Rek,) I Grom)i 2 (37)
One can reduce (36) to
2 2
v
Rek = 2el2 [143 |2 | (ZT||
c 4 w,, ), .
elC()‘Veﬂ-
Imk =Rek——=
\/2w§

It is important to note that the formal introduction of the
surface impedance for this case,

. wl )
§:|§|e—l37/4: cs e—137r/4 ,

into Eq. (8) leads to an incorrect form of the dispersion
relations. The physical reason for this is transparent:
Eq. (8) describes correctly only the case of the medium
with nonlocal electric properties.

For the last example of a medium with local properties
let us consider at z >0 the dense plasma (v, >>w) with
low collisional losses (@ >>v4). The dielectric permeabil-

ity for this case reads [12]
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w, o
62=1_"7+l
(0] (0]

T =6tie), (39)
where €, <0, |65 > €5, and |€| >>€,.

Introducing (39) into (10) and solving for the k vector
one can get

172 2

€ €0
Rek =kyel”? 1+——,1— =koel”? |1+ 12 ,
€3 w5
2y (40)
Imk =Rek2e%—w? wl
@p (9]

A comparison of all these cases shows the following.
In the case of a nondissipative medium (Ime,=0) the
dispersion relation is linear and depends only on the
values of the dielectric permeabilities of both media. In-
troducing dissipation (in the case of the metal: Ime,7O0;
Ree,=0) leads to a nonlinear dispersion relation. The in-
troduction of the large negative real part of the permea-
bility along with low collisional dissipation in the plasma
does not change the main frequency dependence of the
nonlinear part: it remains the same as in the case of a
metal, ~co2/w12,. If one considers a surface wave propa-
gating along the boundary between a low- and high-
density plasma with nonlocal isotropic properties, the
nonlinear part of the dispersion relation changes only
slightly, ~(w/w, )*/3, in comparison with a plasma which
has local properties. The transition to media having non-
local anisotropic properties corresponds to the introduc-
tion of a new parameter: the degree of anisotropy. This
parameter appears in the dispersion relation as the ratio
of the real to the imaginary part of the impedance. The
real part of the impedance is positive in accordance with
the Kramers-Kronig relations [8]. The imaginary part is
negative and for the case of the isotropic anomalous skin
effect |Im&|/ReE=V'3 [6]. For an anisotropic plasma
this ratio decreases as the anisotropy parameter in-
creases, A=(T,/T,)—1>0. As follows from calcula-
tions [4] [Im&| /Reé=1atd~1,e.g., T, <2T,.

Thus on the boundary of such a plasma the phase ve-
locity of the surface wave may approach the speed of
light in vacuum. Consequently it is possible, in principle,
to excite the surface wave even on the boundary of such a
plasma and vacuum.

To understand the physical reason for this
phenomenon one has to remember that not only nonlo-
cality characterizes this kind of the plasma. The anoma-
lous skin effect arises when two conditions are fulfilled.
First, the electron mean free path substantially exceeds
the field penetration depth, e.g., [,; >>I.. The second con-
dition dictates that the distance the electron penetrates
during a wave period is larger than the skin length, e.g.,
u/w>>I;. Thus the first condition is responsible for spa-
tial dispersion of the conductivity, while the second re-
lates to frequency dispersion. In fact, the anisotropy
changes not only the relative role of the different absorp-
tion mechanisms but strongly affects the dispersion prop-
erties of the plasma. It is worth comparing the similarity
of the results obtained here with the case of a surface
wave on the boundary of a nonlinear medium. For such

a medium the changes in refractive index are due to
dependence of the permeability on the electric field inten-
sity. Because these changes are largest near the surface,
they create a channel supporting a surface wave. For the
case of a plasma having nonlocal parameters, the change
of the dispersive properties with distance inside a plasma
is related to the change of the asymmetry parameter of
the electron distribution function. This asymmetry has a
maximum near the surface and decreases inside the plas-
ma thus causing the wave to have maximum phase veloci-
ty near the surface. Note also that the noncollisional ab-
sorption mechanism, which is responsible for the asym-
metry in a nonlocal medium, is itself nonlinear (the ab-
sorption term depends on the field intensity).

It is out of the scope of this paper to discuss the
methods for creating such a highly anisotropic plasma.
The interaction of an ultrashort laser pulse with a solid
target at the relativistic (7A%> 10'® W um?/cm?) intensi-
ties may be one of the possible ways. We should note
that previous arguments are applicable also to the case of
a medium with a highly anisotropic conductivity.

It is well known [13] that TE surface waves can be ex-
cited on the boundary of a homogeneous dielectric and a
semi-infinite periodic layered medium. On the interface
of two homogeneous dielectrics it is possible to excite
only TM surface modes (as in the present paper). The
question arises: is it possible to excite TE modes on the
boundary of the highly anisotropic metal?

VI. CONCLUSION

An effective description has been formulated of surface
waves propagating along a high-density plasma-vacuum
boundary or a high-density-plasma—low-density-plasma
boundary in the case when the high-density plasma can
be characterized by a nonlocal asymmetric conductivity
tensor. Such a plasma with a steplike (or very steep) den-
sity gradient can be created by the interaction of a short
(<1 ps) high-intensity (IA2>10"® W pum?/cm?) laser
pulse with a solid target. Assuming that the plasma elec-
tron distribution function is known and only slightly
affected by the surface wave, we have calculated the sur-
face impedances for isotropic and anisotropic plasmas.
We have found and analyzed the dispersion relations for
the surface waves for these cases. Attenuation of the
waves has been taken into account.

It is shown that the frequency dependence in the
dispersion relation remains the same for the different
forms of the electron distribution function. On the other
hand, the introduction of the asymmetry parameter,
which is related to the ratio of the real to the imaginary
parts of the surface impedance, leads to an increase in the
phase velocity of the surface wave. Physically this indi-
cates a change in the relative role of the different absorp-
tion mechanisms in the plasma and relates to the role of
dispersion on the surface wave. In an isotropic medium
the noncollisional damping (phase breaking) is dominant
while in an anisotropic plasma the role of capacitor heat-
ing, connected with the work done by the z component
of the electric field on the electrons, increases. Thus
it is possible to excite a surface wave even on a
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vacuum-—anisotropic-plasma interface if the proper asym-
metry parameter can be obtained. The same arguments
are also applicable to the case of a medium with a highly
anisotropic conductivity tensor. We plan to consider this
problem elsewhere.

The next step for this work is to consider the full non-
linear self-consistent problem in which the surface wave
is excited by the heating beam itself. It should be noted
that this problem was partially considered in the present
paper. It has been shown in Sec. III that a surface wave
in the electromagnetic limit (k > k) only weakly affects
the skin depth and the attenuation properties. We pro-
posed previously [5] the use of layered targets (consisting
of a low-density foam and a metal layer) which, after be-
ing ionized by an intense ultrashort heating laser beam,
allow the excitation of surface waves by an obliquely in-
cident p-polarized electromagnetic wave. It is worth not-

ing that a similar structure is created during the interac-
tion of an ultrashort intense laser pulse with the solid. It
was shown both theoretically [3] and experimentally [14]
that a thin inhomogeneous plasma layer with very steep
density gradient of the order <<A, (A, is the laser wave
length) is created on the surface of a metal target (during
the interaction time of hundreds of femtoseconds). This
layer can play the same role as a low-density plasma layer
in supporting surface waves [15] on the boundary of the
plasma with solid density.
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